GAUSS-JORDAN STUFF

Gaussian elimination.

Here is the basic outline of the Gaussian elimination process for an augmented matrix. Let A be the augmented matrix of a linear system of variables.

- (1) Interchange rows in A so that the leftmost nonzero entry of A is in the first row.
- (2) Add multiples of the first row to lower rows so that there are only zeros below the pivot of the first row.
- (3) Now... forget about the first row and first column of A! Cover them up or something. Now you have a smaller matrix. Call it B. Repeat steps 1,2, and 3 with B until you run out of matrix!

We'll see an example later.

Echelon form.

The idea with Gaussian elimination is that it gets the matrix into echelon form. Here's a reminder of the definition. A matrix is in echelon form if the following are true:

- (1) Every leading term is to the left of the leading term in the lower rows.
- (2) All zero rows are at the bottom.

But wait—there's more!

Gauss-Jordan elimination.

Here is the basic outline of the Gauss-Jordan elimination process for an augmented matrix. Again, let A be the augmented matrix of a linear system of variables.

- (1) Do Guassian elimination first—now the matrix is in echelon form.
- (2) Multiply each row with a pivot entry by the reciprocal of the pivot so that the pivot now equals 1.
- (3) Find the row with the rightmost pivot. Add multiples of that row to the above rows so that only zeros remain above the pivot.
- (4) Move to the *next* rightmost pivot, and repeat steps 3 and 4 until you run out of pivots!

We'll see an example later.

Reduced row echelon form.

The idea with Guass-Jordan elimination is that it gets the matrix into its *unique* reduced (row) echelon form. Here's a reminder of the definition. A matrix is in reduced (row) echelon form if the following are true:

- (1) The matrix is in echelon form.
- (2) Every pivot equals 1.
- (3) The only nonzero entry in each pivot column is the pivot itself.

An example.

Let's consider the augmented matrix

$$\begin{bmatrix} 0 & 1 & 3 & 6 & 11 \\ 2 & -1 & 2 & 0 & 7 \\ 2 & -2 & 0 & -5 & 0 \\ -6 & 5 & -1 & 11 & 0 \end{bmatrix}$$

and perform Guassian elimination on it. Step 1:

$\begin{bmatrix} 0\\2\\2\\-6\end{bmatrix}$	$ \begin{array}{c} 1 \\ -1 \\ -2 \\ 5 \end{array} $	$ \begin{array}{c} 3 \\ 2 \\ 0 \\ -1 \end{array} $		$ \begin{array}{c} 11 \\ 7 \\ 0 \\ 0 \end{array} $	$\stackrel{R_1\leftrightarrow R_2}{\sim}$	$\begin{bmatrix} 2\\0\\2\\-6\end{bmatrix}$	-1 1 -2 5	$2 \\ 3 \\ 0 \\ -1$	$\begin{array}{c} 0 \\ 6 \\ -5 \\ 11 \end{array}$	7 11 0 0	•
$\lfloor -6 \rfloor$	5	-1	11	0		[-6]	5	-1	11	0	

Step 2:

$$\begin{bmatrix} 2 & -1 & 2 & 0 & 7 \\ 0 & 1 & 3 & 6 & 11 \\ 2 & -2 & 0 & -5 & 0 \\ -6 & 5 & -1 & 11 & 0 \end{bmatrix} \xrightarrow{R_3 - R_1 \to R_3} \begin{bmatrix} 2 & -1 & 2 & 0 & 7 \\ 0 & 1 & 3 & 6 & 11 \\ 0 & -1 & -2 & -5 & -7 \\ -6 & 5 & -1 & 11 & 0 \end{bmatrix} \xrightarrow{R_4 + 3R_1 \to R_4} \begin{bmatrix} 2 & -1 & 2 & 0 & 7 \\ 0 & 1 & 3 & 6 & 11 \\ 0 & -1 & -2 & -5 & -7 \\ 0 & 2 & 5 & 11 & 21 \end{bmatrix}.$$

Step 3: forget about the first row and column and keep going! Another round of step 1:

$$\begin{bmatrix} 2 & -1 & 2 & 0 & 7 \\ 0 & 1 & 3 & 6 & 11 \\ 0 & -1 & -2 & -5 & -7 \\ 0 & 2 & 5 & 11 & 21 \end{bmatrix}$$

already has the next pivot in the correct place. Step 2:

2	-1	2	0	7]		2	-1	2	0	7]		[2]	$^{-1}$	2	0	7]	
0	1	3	6	11	$R_3 + R_2 \rightarrow R_3$	0	1	3	6	11	$R_4 - 2R_2 \rightarrow R_4$	0	1	3	6	11	
0	-1	-2	-5	-7	\sim	0	0	1	1	4	\sim	0	0	1	1	4	·
0	2	5	11	21		0	2	5	11	21		0	0	$^{-1}$	$^{-1}$	-1	

Step 3: now, forget about the *second* row and *second* column and keep going! Another round of step 1:

$$\begin{bmatrix} 2 & -1 & 2 & 0 & 7 \\ 0 & 1 & 3 & 6 & 11 \\ 0 & 0 & 1 & 1 & 4 \\ 0 & 0 & -1 & -1 & -1 \end{bmatrix}$$

already has the pivot in the correct place. Step 2:

$\lceil 2 \rceil$	$^{-1}$	2	0	7		2	$^{-1}$	2	0	7	
0	1	3	6	11	$R_4 + R_3 \rightarrow R_4$	0	1	3	6	11	
0	0	1	1	4	\sim	0	0	1	1	4	•
0	0	-1	$^{-1}$	-1		0	0	0	0	3	

Step 3: forget about the *third* row and *third* column, and keep going! Only $\begin{pmatrix} 0 & 3 \end{pmatrix}$ remains in the bottom right corner, and there is nothing left to do. We have just completed Gaussian elimination, which is also step 1 of Gauss-Jordan elimination!

 $\mathbf{2}$

The matrix is therefore in echelon form Let's finish the Gauss-Jordan elimination process. Step 2:

$$\begin{bmatrix} 2 & -1 & 2 & 0 & 7 \\ 0 & 1 & 3 & 6 & 11 \\ 0 & 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1 \to R_1} \begin{bmatrix} 1 & -\frac{1}{2} & 1 & 0 & \frac{7}{2} \\ 0 & 1 & 3 & 6 & 11 \\ \sim \end{bmatrix} \xrightarrow{\frac{1}{3}R_4 \to R_4} \begin{bmatrix} 1 & -\frac{1}{2} & 1 & 0 & \frac{7}{2} \\ 0 & 1 & 3 & 6 & 11 \\ 0 & 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & 1 & 0 & \frac{7}{2} \\ 0 & 1 & 3 & 6 & 11 \\ 0 & 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \cdot$$

Step 3: the first pivot is the 1 in row 4. Observe

$$\begin{bmatrix} 1 & -\frac{1}{2} & 1 & 0 & \frac{7}{2} \\ 0 & 1 & 3 & 6 & 11 \\ 0 & 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{2} & 1 & 0 & 0 \\ 0 & 1 & 3 & 6 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

by subtracting multiples of row 4 from the rows above. Step 4: the next pivot is the 1 in row 3, column 3, so we repeat step 3 as follows:

$$\begin{bmatrix} 1 & -\frac{1}{2} & 1 & 0 & 0 \\ 0 & 1 & 3 & 6 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}_{R_2 - 3R_3 \to R_2} \begin{bmatrix} 1 & -\frac{1}{2} & 1 & 0 & 0 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_3 \to R_1} \begin{bmatrix} 1 & -\frac{1}{2} & 0 & -1 & 0 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 4: the next pivot is the 1 in the second column—time for another round of step 3!

1	$-\frac{1}{2}$	0	-1	0	1	1	0	0	$\frac{1}{2}$	0	
0	1	0	3	0	$R_1 + \frac{1}{2}R_2 \rightarrow R_1$	0	1	0	$\overline{3}$	0	
0	0	1	1	0	\sim	0	0	1	1	0	
0	0	0	0	1		0	0	0	0	1	

Step 4: the *only* remaining pivot is the top-left 1 in the matrix, and there is no need to do step 3 again. This completes Gauss-Jordan elimination, and the matrix above is in reduced (row) echelon form!

(Note: we encountered no zero rows. Fortunately, the procedure I wrote down above ensures that all the zero rows will show up at the bottom of the matrix in the end.)

Notice that this procedure has reduced the linear system

$$x_{2} + 3x_{3} + 6x_{4} = 11$$

$$2x_{1} - x_{2} + 2x_{3} = 7$$

$$2x_{1} - 2x_{2} - 5x_{4} = 0$$

$$-6x_{1} + 5x_{2} - x_{3} + 11x_{4} = 0$$

to the (inconsistent) linear system

$$x_{1} + \frac{1}{2}x_{4} = 0$$

$$x_{2} + 3x_{4} = 0$$

$$x_{3} + x_{4} = 0$$

$$0 = 1$$