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“You don't start out writing good stuff. You start out writing crap
and thinking it's good stuff, and then gradually you get better at
it."

- Octavia Butler

“I've proven something original, but | would still call it pretty
trivial.”
- Dan Snaith

“If | had 53 minutes to spend as | liked, | should walk at my leisure
toward a spring of fresh water.”
- The Little Prince, Antoine de Saint-Exupéry
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Theorem (Hurwitz, Dénes)

The number of (n — 1)-tuples of transpositions in &, whose
product is the n-cycle (1---n) equals n"2.
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Notation

® (C, — conjugacy class of permutations with cycle type

° X,)) — irreducible &, character x* evaluated on Cu



Notation

® (C, — conjugacy class of permutations with cycle type

° X,)) — irreducible &, character x* evaluated on Cu

Example

The transpositions are C(, 10-2), and deg x> = X?l")'
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Definition
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i =#{(t1, . k) ECly it -tk €Cu}
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Main inspiration
Definition

For all n, k € N and p = n, define

i =#{(t1, . k) ECly it -tk €Cu}

For example, (1234) - (1234) = (13)(24) +— g&2,(2,2)

Theorem (Stanley)
For all n,k € N and i = n, we have

Bk, _ (n — ]_)!kil n—1 (_l)rkxfln—r,lf)
#C“ n (nfl)k—l

r=0 r




Application to Hurwitz theory:

Hy 1), ((n): (), (n)) =




Application to Hurwitz theory:

_&gay )0 n even,
H3(n—1)—">0 ((n)’ (n), (n)) T {2,7((’,71+11))! n odd.

® “Factorization enumeration in the symmetric group
corresponds to enumeration (up to isomorphism and
automorphism) of branched covering maps of Riemann

surfaces”



Application to Hurwitz theory:

_&gay )0 n even,
H3(n—1)—">0 ((n)’ (n), (n)) T {2,7((’,71+11))! n odd.

® “Factorization enumeration in the symmetric group
corresponds to enumeration (up to isomorphism and
automorphism) of branched covering maps of Riemann
surfaces”

® Riemann Surfaces and Algebraic Curves: A First Course in
Hurwitz Theory -Cavalieri and Miles
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Definition
An element in GL,F, is a Singer cycle if it has an eigenvalue with
multiplicative order ¢" — 1 = (q — 1)[n],.



Segueing into GL,F, ...

Definition
An element in GL,F, is a Singer cycle if it has an eigenvalue with
multiplicative order ¢" — 1 = (q — 1)[n],.

Theorem (Lewis-Reiner-Stanton)

For all n > 2 and prime powers q, the number of ordered n-tuples
of reflections in GL,F, whose product is a fixed, arbitrary Singer
cycle equals (g" — 1)"1.



Theorem (Lewis-Morales)

Fix a Singer cycle c € GL,Fq. Let a,s(q) be the number of pairs
(u, v) of elements of GL,F, such that u has fixed-space dimension
r, v has fixed-space dimension s, and ¢ = u-v. Then

1 rs_ (a0 (g n
#GLnqugoar,s(q)-xy =G @,

tu—t—u[n t_]-]lq [n—U—l]| (q”_q _q +1)
0§t§n1q [n—1)lg - [n—t —u]ly (g—1)

t+u<n

(g Deyig
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Gn GL,Fq
{1,...,n} Fg
subset subspace

cardinality | dimension
n-cycle | Singer cycle?
cycle type 777
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g§= 11 € GLgIF3
01
1
F} o F;0F; = FS
type(g) = (3, 1,1 ,1)F6
A quote from Stong

The analog of a
cycle in w E S‘. of length m is seen to be a polynomial _n{.{ } -:)f‘ dcgm: m
that divides Lhar(a, )




Definition (cycle type)

Suppose g € GL,Fg4 has characteristic polynomial f, which factors
into irreducibles as f = f; - - - f, with weakly decreasing degrees.
Define its cycle type to be

type(g) = (degfi, ..., degfy) - n.
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Definition (cycle type)
Suppose g € GL,Fg4 has characteristic polynomial f, which factors
into irreducibles as f = f; - - - f, with weakly decreasing degrees.
Define its cycle type to be

type(g) = (degfi, ..., degfy) - n.

Notation

For all n € N, u = n and prime powers g, define

T.(q) = {g € GL,Fq : type(g) = p}.

Philosophy: 7,(q) is a g-analogue of C,,.
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g = 01 € GLgF3
11
1
Uu @ Vo W=F§
char. poly. (g) = (x* — x? —1)(x? —D(xt-1)

type(g) =(3,2,1) = (dlm U,dim V,dlm W)

Corollary (Stong, see also Kung, Lehrer, Fulman)

As q — 00, an arbitrarily large proportion of GL,IF, elements have
no repeated factors in their characteristic polynomial.



Theorem (Brickman-Fillmore)

The lattice of stable subspaces of g € GL,IF is Boolean if and
only if g has no repeated factors in its characteristic polynomial.
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Theorem (Brickman-Fillmore)

The lattice of stable subspaces of g € GL,IF is Boolean if and
only if g has no repeated factors in its characteristic polynomial.

type(g) = (3,2,1) ™ = (254)(16)(3) € C32,1)

no repeated factors

Fé {123456}
N N
UusVv UsW VoW {12456} {2345} {136}
| > K X >
U /\ V /\ w {245} {16} {3}

ST N



Definition
An element g € GL,Fq is called regular semisimple if the
irreducible factors of its characteristic polynomial are distinct.

Notation

For all n € N, = n, and prime powers g, define

7,7(q) = {g € T.(q) : g is regular semisimple}.

Philosophy: 7,7(q) is also a g-analogue of C,,.



Note: ﬁf)(q) = T(n)(q) = the regular elliptic elements.



Note: ﬁf)(q) = T(n)(q) = the regular elliptic elements.

Definition

For all n, k € N, p = n, and prime powers g, define
(@) = #{(t1, .., &) € Tiy(@)* - 11+ -tk € Tu(a)},
gR.(q) = #{(t1, ., t&) € T(m)(q)" : -t € T7(q)}-



Note: ﬁf)(q) = T(n)(q) = the regular elliptic elements.

Definition

For all n, k € N, p = n, and prime powers g, define
(@) = #{(t1, .., &) € Tiy(@)* - 11+ -tk € Tu(a)},
gR.(q) = #{(t1, ., t&) € T(m)(q)" : -t € T7(q)}-

Philosophy: these are g-analogues of

8k = #{(i‘l7 ce tk) S C(kn) Tt € C#}
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Main result

Theorem

For all n, k € N with n > 2, all prime powers q, and all ;s = n with
my(p) =1, we have

- B #72,7)( ) #TD n—1 )rk (n—r,17)
89 = 4 GLT, rz (o) o1 )k—l'
rlq




Main result

Theorem
For all n, k € N with n > 2, all prime powers q, and all ;s = n with

my(p) =1, we have

o ooy #T(@) #T0(a) )fk )
gk,p,(q) - #GL ]F ; ( 2 ‘ [ _ ] )k—l
rlq

Compare to a rephrasing of Stanley's result:
#Ck CM nfl rk (n r1")
8k, =
K #Gn Z

= ,)



Corollary

Under the previous hypotheses (m1(p) = 1), we have

- gE#(q)/#Tn)(q)k _ gka#/#c(kn)
q—1 #ﬁu(q)/#GLnFq #Cu/#gn .




Corollary
Under the previous hypotheses (m1(p) = 1), we have

- gE#(q)/#Tn)(q)k _ gka#/#c(kn)
q—1 #ﬁu(q)/#GLnFq #Cu/#en .

Theorem
For all n, k € N with k > 2 and all = n, we have

i 8on()/#T((a)
475 FTD(q)/#CLF,

The same holds without the O.

1.



Corollary (to main result)

For all n, k € N with n > 2 and all prime powers q, we have

T,, k. Tnf __1\nk—n—k
gk,(n—1,1)(q) = il )(q) il 1’1)(q) . <1 <= (1)> .

#GLnFq q(g)(k_l)



Corollary (to main result)

For all n, k € N with n > 2 and all prime powers q, we have

T,, k. Tnf __1\nk—n—k
gk,(n—1,1)(q) = il )(q) il 1’1)(q) . <1 <= (1)> .

#GLnFq q(g)(k_l)

Compare to

#C(kn) ' #C(nflvl) . (1

8k,(n-1,1) = S + (—1)"k7"7k> )



Theorem

For all n, k € N and prime powers q, we have a closed formula for

gk,(n)(q)7

but it is complicated and involves k + 1 nested sums over the
divisors of n.



Theorem
For all n, k € N and prime powers q, we have a closed formula for
gk,(n)(q)7

but it is complicated and involves k + 1 nested sums over the
divisors of n.

Unsure how to compare to

#Ckn+1 =1/ 1y k=1
&k (n) = #(62, Z <((n—1))> :

r=0




.....

q <(—1)”#GL,,IFq> k

n(g" —1)

. H?:l(qi — 1) . [n/d—l

ey L7l

(a" = DI, (g% — Dp(n/s)]

|CmZ (g::iaqsl - 17"‘7qsk - 1)



__ 1 (—1)"#GL,Fq\ ¥
Pruda) = q< n(q" —1) >

(q) = d("3") . 1 -1 _ [n/d—l

deg"’d’r - n/d, ; r ] d
Hjil(qjd -1) I
-1
Dn.a(q) = > (—1) deg, 4,(q)* "
r=0

n k s
q" — 1) ][ [(¢ — 1)u(n/s;
Coelgy = 3 LC DI [0 = ulo/s)
1505k [0 lemz, (qc—lv gt —1,...,q% — 1)

8k,(n)(q)
(n) Z( 1) k+1/d nk+1d Zp,% nk+1c )

n k+1 Cl T




Missing cases for g .(q) or g, (q): mi(n) # 1.



Missing cases for g, .(q) or g, (q): mi(n) # 1.
Some progress:

Theorem

For all even prime powers q and n, k € N with n odd, we have

O #ﬁn)(q)k . #E\](q) n! (_1)rkX§Lnfr,1')
Beuld) = GL,F D —
#GL, q —o0 (q( 2 )[njl]q>

if either 1 = (n —2,2) with n > 5 or u = (2,1"2) with n > 3.
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Technique

Theorem (Frobenius)

Let G be a finite group, let k € N, and, for each i € {1,..., k}, let
A; be a union of conjugacy classes in G. For any g € G, the
number of tuples (ti,...,tx) € A1 X -+ X Ak such that

ty-- -ty = g Is given by

k
e 2 (deg)™ (e H ][> x(0)

Xelrr G) i=1teA;



For the symmetric group

Theorem (Murnaghan, Nakayama)
For all n € N and \, u = n, we have

xa= >, (T

border strip tab. T
of shape \
and type pu



en.wikipedia.org/wiki/Murnaghan-Nakayama_rule
® ME Ser U squares Tiea Wit e neger 1mornm & Dorager sinp, Ndr1s, d Connetieu skew-snape wimn no Zx-sg

The height, hi(T), is the sum of the heights of the border strips in T. The height of a border strip is one less than t
It follows from this theorem that the character values of a symmetric group are integers.

For some combinations of A and p, there are no border-strip tableaux. In this case, there are no terms in the surr

Example |edi)]

Consider the calculation of one of the character values for the symmetric group of order 8, when A is the partition
A specifies that the tableau must have three rows, the first having 5 boxes, the second having 2 boxes, and the tl
tableau must be filled with three 1's, three 2's, one 3, and one 4. There are six such border-strip tableaux:

1]212]214] [1]2]2]3]4]
KE]| 2]
1 1

1]1]34] [1]1]2]2]2] [1]1]2]2]2] [1]2]2]2]3]
2] 3] 4] 4]

1 1 1 1
H 1] 1] L
2] 4] 3] L]

If we call these T, Ta, T3, Ty, T5, and T§, then their heights are
M(T))=01+1+040=1
h(Th) =1+0+0+0=1
(T3) =1+0+04+0=1
ht(Ty) =24+0+0+0=2
ht(T5) =24+0+0+0=2
ht(Ty) =24+1+0+0=3

and the character value is therefore

Xagty = (CD + (C) A+ () (C1R (R (1P =111 -1 =2

u}
o)
I
i
it



For GL,F,

Lemma (based on Green's work)

n, Ak n/d, q is a prime power, f € Fy4(q),
phkn, g €T;(q), and hy, ..., hyyy are the distinct irreducible
factors of the characteristic polynomial of g. If some part of 1 is
not divisible by d, then xf7*(g) = 0. Otherwise, there exists
i+ n/d such that = dfi, and

Xf»—))\(g) d(d 1) /\H Z aﬁ)ff[ﬂl

Blqu”’l
hi(Bi)=0



Previous results on characters

Theorem (Steinberg)

Forallne N and A\, = n, if g € T7(q), then N g) = Xﬁ-
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Theorem (Steinberg)

Forallne N and A\, = n, if g € T7(q), then N g) = Xﬁ-

Proposition (Lewis-Reiner-Stanton)

For all x € Irr GL,Fq and g € T(n)(q), if x(g) # 0, then
x = x4 for some f with deg f = d and
re{0,...,n/d —1}.



Previous results on characters

Theorem (Steinberg)

Forallne N and A\, = n, if g € T7(q), then N g) = Xﬁ-

Proposition (Lewis-Reiner-Stanton)

For all x € Irr GL,Fq and g € T(n)(q), if x(g) # 0, then
x = x4 for some f with deg f = d and
re{0,...,n/d —1}.

Compare to:

Xf\n);&o — A= (n—r,1") for some r € {0,...,n—1}.



Summary of proofs

f=(n/d—r,1")

Proposition says only x are relevant.

Lemma says only need to consider values of d dividing every
part of p.

Plug character values into Frobenius' formula.

Simplify. @



Summary of proofs

f=(n/d—r,1")

® Proposition says only x are relevant.

® | emma says only need to consider values of d dividing every
part of p.

® Plug character values into Frobenius' formula.
e Simplify. @

End up with a formula for

gk,,u(q) =#{(t1,..., ) € 7‘n)(q)k SRR TS 77ﬁ(q)}



Polynomiality



Corollary (to main result)

Suppose n,k € N with n > 2. If = n with my(u) = 1, then
gE u(q) is a polynomial in q with rational coefficients.



Corollary (to main result)

Suppose n,k € N with n > 2. If 't n with my(u) = 1, then
ge u(q) is a polynomial in q with rational coefficients.

Example

For all prime powers g,

8,02,1)(q) = L£¢(q—1)"(q+1)*(¢® + q+1).



Corollary (to main result)

Suppose n,k € N with n > 2. If 't n with my(u) = 1, then
g M(q) is a polynomial in q with rational coefficients.

Example

For all prime powers g,

L (g 1)°(q + 1)°(¢? — g+ 1)(¢® + q +1).

83,21)(9) = ¢,



Corollary (to gk n)(q) formula)

Fix n,k € N. If n is prime, there exist degree-kn® polynomials
fo,f, ..., a1 € Q[x] such that, for each i € {0,...,n—1}, we
have

8k,n)(q) = fi(q) for all prime powers q =i (mod n).

Furthermore, i # fo=fh=f ="+ =f,_1.



Corollary (to gk n)(q) formula)

Fix n,k € N. If n is prime, there exist degree-kn® polynomials
fo, fi, ..., a1 € Q[x] such that, for each i € {0,...,n—1}, we
have

8k,(m(q) = fi(q) for all prime powers g =i (mod n).
Furthermore, i £ fo=Hh =Ff="---=f,_1.
Example

If n=k =2, then

*(q—1)%(¢° — 3+ 4),

q
a(q—1)*q* — 24> + 29+ 1).

fo(q) =
A(q) =3



Corollary (to gk n)(q) formula)

Fix n,k € N. If n is prime, there exist degree-kn® polynomials
fo, fi, ..., a1 € Q[x] such that, for each i € {0,...,n—1}, we
have

8k,(m(q) = fi(q) for all prime powers g =i (mod n).

Furthermore, i £ fo=Hh =Ff="---=f,_1.
Example
If n=3 and k = 2, then

®(g—1)*(q +1)*(¢° — 49" +3¢> + 5¢> — 9g + 1),

>(q + 1)(q°+2¢°—2q7 —3¢°+5¢°+¢* —9g>—4¢>—2q+2).

Q Q9
w
—~
Q
|
—
~—



Example
The generating functions for quasipolynomials are rational:

> &o,)(@)xT = 2x°(4x"? + 177x™ 4 1821x™0 + 8301x°
q=>0

+ 22521x% + 37086x" + 41830x° + 29910x°+
14706x* + 4161x3 + 717x° + 45x

I 1)/ ((1- x2)8(1 - x)3) .



Coefficients of numerator of generating function of g5 (2)(q)

80000
70000
60000 - .
50000 -
40000 4
30000 1 .
20000 1

10000 4




Coefficients of numerator of generating function of g3 (2)(q)

2.5e9 4

2e9 4

1.5e9 9

1e9 4

5e8 4

10

15

20



Coefficients of numerator of generating function of g4 (2)(q)
5el14 .

se14 ]
2014 ]
2el4 .

lel4 - .

P



Coefficients of numerator of generating function of g5 (2)(q)

2e20

1.5e20

1e20

5el9




Coefficients of numerator of generating function of g, (3)(q)

4el9
3el9
2el9

1el9 *




Coefficients of numerator of generating function of g3 (3)(q)

4e34

3e34

2e34

le34 4

10
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8k,(m(q) = fi(q) for all prime powers g=1 (mod n).
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® Refine the main factorization results to the level of conjugacy
classes.




Open problems

Prove that, for composite n, there exists fi € Q[x] such that
8k,(m(q) = fi(q) for all prime powers g=1 (mod n).
For more values of p, prove

- 22,.(a0)/#T(my(a)" _ 8/ #C (s
a—1 #T,7(q)/#GLsFq  #Cu/#6,

Refine the main factorization results to the level of conjugacy
classes.

Describe the numerator of > -, gk,.(q)x7.
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More open problems

Develop g-analogues of the following:

Hurwitz theory

the tree bijection from the introduction

the Murnaghan-Nakayama rule

the Jucys-Murphy elements and the class symmetric functions

Thanks!
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