Cycle type factorizations in $\mathrm{GL}_{n} \mathbb{F}_{q}$

Graham Gordon
University of Washington
arXiv: 2001.10572

"You don't start out writing good stuff. You start out writing crap and thinking it's good stuff, and then gradually you get better at it."

- Octavia Butler
"I've proven something original, but I would still call it pretty trivial."
- Dan Snaith
"If I had 53 minutes to spend as I liked, I should walk at my leisure toward a spring of fresh water."
- The Little Prince, Antoine de Saint-Exupéry

1 Introduction

2 Factorization results

3 Behind the scenes

4 Polynomiality

5 Open problems

Introduction

$$
(14) \cdot(13) \cdot(12)=(12) \cdot(23) \cdot(34)=(1234) \in \mathfrak{S}_{4}
$$

$$
(14) \cdot(13) \cdot(12)=(12) \cdot(23) \cdot(34)=(1234) \in \mathfrak{S}_{4}
$$

Theorem (Hurwitz, Dénes)
The number of $(n-1)$-tuples of transpositions in \mathfrak{S}_{n} whose product is the n-cycle $(1 \cdots n)$ equals n^{n-2}.

$$
(14) \cdot(13) \cdot(12)=(12) \cdot(23) \cdot(34)=(1234) \in \mathfrak{S}_{4}
$$

Theorem (Hurwitz, Dénes)
The number of $(n-1)$-tuples of transpositions in \mathfrak{S}_{n} whose product is the n-cycle $(1 \cdots n)$ equals n^{n-2}.

Notation

- \mathcal{C}_{μ} - conjugacy class of permutations with cycle type μ
- χ_{μ}^{λ} - irreducible \mathfrak{S}_{n} character χ^{λ} evaluated on \mathcal{C}_{μ}

Notation

- \mathcal{C}_{μ} - conjugacy class of permutations with cycle type μ
- χ_{μ}^{λ} - irreducible \mathfrak{S}_{n} character χ^{λ} evaluated on \mathcal{C}_{μ}

Example

The transpositions are $\mathcal{C}_{\left(2,1^{n-2}\right)}$, and $\operatorname{deg} \chi^{\lambda}=\chi_{\left(1^{n}\right)}^{\lambda}$.

Main inspiration

Definition

For all $n, k \in \mathbb{N}$ and $\mu \vdash n$, define

$$
g_{k, \mu}=\#\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{C}_{(n)}^{k}: t_{1} \cdots t_{k} \in \mathcal{C}_{\mu}\right\}
$$

Main inspiration

Definition

For all $n, k \in \mathbb{N}$ and $\mu \vdash n$, define

$$
g_{k, \mu}=\#\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{C}_{(n)}^{k}: t_{1} \cdots t_{k} \in \mathcal{C}_{\mu}\right\} .
$$

For example, $(1234) \cdot(1234)=(13)(24) \longleftrightarrow g_{2,(2,2)}$

Main inspiration

Definition

For all $n, k \in \mathbb{N}$ and $\mu \vdash n$, define

$$
g_{k, \mu}=\#\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{C}_{(n)}^{k}: t_{1} \cdots t_{k} \in \mathcal{C}_{\mu}\right\} .
$$

For example, $(1234) \cdot(1234)=(13)(24) \longleftrightarrow g_{2,(2,2)}$

Theorem (Stanley)

For all $n, k \in \mathbb{N}$ and $\mu \vdash n$, we have

$$
\frac{g_{k, \mu}}{\# \mathcal{C}_{\mu}}=\frac{(n-1)!^{k-1}}{n} \sum_{r=0}^{n-1} \frac{(-1)^{r k} \chi_{\mu}^{\left(n-r, 1^{r}\right)}}{\binom{n-1}{r}^{k-1}}
$$

Application to Hurwitz theory:

$$
H_{3(n-1) \xrightarrow{n} 0}((n),(n),(n))=\frac{g_{3,\left(1^{n}\right)}}{n!}= \begin{cases}0 & n \text { even }, \\ \frac{2(n-1)!}{n(n+1)} & n \text { odd } .\end{cases}
$$

Application to Hurwitz theory:

$$
H_{3(n-1) \xrightarrow{n} 0}((n),(n),(n))=\frac{g_{3,\left(1^{n}\right)}}{n!}= \begin{cases}0 & n \text { even }, \\ \frac{2(n-1)!}{n(n+1)} & n \text { odd } .\end{cases}
$$

- "Factorization enumeration in the symmetric group corresponds to enumeration (up to isomorphism and automorphism) of branched covering maps of Riemann surfaces"

Application to Hurwitz theory:

$$
H_{3(n-1) \xrightarrow{n} 0}((n),(n),(n))=\frac{g_{3,\left(1^{n}\right)}}{n!}= \begin{cases}0 & n \text { even } \\ \frac{2(n-1)!}{n(n+1)} & n \text { odd } .\end{cases}
$$

- "Factorization enumeration in the symmetric group corresponds to enumeration (up to isomorphism and automorphism) of branched covering maps of Riemann surfaces"
- Riemann Surfaces and Algebraic Curves: A First Course in Hurwitz Theory -Cavalieri and Miles

Segueing into $\mathrm{GL}_{n} \mathbb{F}_{q} \ldots$

Segueing into $\mathrm{GL}_{n} \mathbb{F}_{q} \ldots$

Definition

An element in $\mathrm{GL}_{n} \mathbb{F}_{q}$ is a Singer cycle if it has an eigenvalue with multiplicative order $q^{n}-1=(q-1)[n]_{q}$.

Segueing into $\mathrm{GL}_{n} \mathbb{F}_{q} \ldots$

Definition

An element in $\mathrm{GL}_{n} \mathbb{F}_{q}$ is a Singer cycle if it has an eigenvalue with multiplicative order $q^{n}-1=(q-1)[n]_{q}$.

Theorem (Lewis-Reiner-Stanton)

For all $n \geq 2$ and prime powers q, the number of ordered n-tuples of reflections in $\mathrm{GL}_{n} \mathbb{F}_{q}$ whose product is a fixed, arbitrary Singer cycle equals $\left(q^{n}-1\right)^{n-1}$.

Theorem (Lewis-Morales)

Fix a Singer cycle $c \in \mathrm{GL}_{n} \mathbb{F}_{q}$. Let $a_{r, s}(q)$ be the number of pairs (u, v) of elements of $\mathrm{GL}_{n} \mathbb{F}_{q}$ such that u has fixed-space dimension r, v has fixed-space dimension s, and $c=u \cdot v$. Then

$$
\begin{aligned}
& \frac{1}{\# \mathrm{GL}_{n} \mathbb{F}_{q}} \sum_{r, s \geq 0} a_{r, s}(q) \cdot x^{r} y^{s}=\frac{\left(x ; q^{-1}\right)_{n}}{(q ; q)_{n}}+\frac{\left(y ; q^{-1}\right)_{n}}{(q ; q)_{n}}+ \\
& \sum_{\substack{0 \leq t, u \leq n-1 \\
t+u \leq n}} q^{t u-t-u} \frac{[n-t-1]!_{q} \cdot[n-u-1]!_{q}}{[n-1]!_{q} \cdot[n-t-u]!_{q}} \frac{\left(q^{n}-q^{t}-q^{u}+1\right)}{(q-1)} \\
& \times \frac{\left(x ; q^{-1}\right)_{t}}{(q ; q)_{t}} \frac{\left(y ; q^{-1}\right)_{u}}{(q ; q)_{u}}
\end{aligned}
$$

Factorization results

Analogous structures

Analogous structures

Analogous structures

Analogous structures

\mathfrak{S}_{n}	$\mathrm{GL}_{n} \mathbb{F}_{q}$
$\{1, \ldots, n\}$	\mathbb{F}_{q}^{n}
subset	subspace
cardinality	dimension

Analogous structures

\mathfrak{S}_{n}	$\mathrm{GL}_{n} \mathbb{F}_{q}$
$\{1, \ldots, n\}$	\mathbb{F}_{q}^{n}
subset	subspace
cardinality	dimension
n-cycle	Singer cycle?

Analogous structures

\mathfrak{S}_{n}	$\mathrm{GL}_{n} \mathbb{F}_{q}$
$\{1, \ldots, n\}$	\mathbb{F}_{q}^{n}
subset	subspace
cardinality	dimension
n-cycle	Singer cycle?
cycle type	$? ? ?$

$$
g=\left(\begin{array}{cccccc}
0 & 0 & 1 & & & \\
1 & 0 & 1 & & & \\
0 & 1 & 1 & & & \\
& & & 1 & 1 & \\
& & & 0 & 1 & \\
& & & & & 1
\end{array}\right) \in \mathrm{GL}_{6} \mathbb{F}_{3}
$$

$$
\begin{aligned}
& g=\left(\begin{array}{cccccc}
0 & 0 & 1 & & & \\
1 & 0 & 1 & & & \\
0 & 1 & 1 & & & \\
& & & 1 & 1 & \\
& & & 0 & 1 & \\
& & & & 1
\end{array}\right) \in \mathrm{GL}_{6} \mathbb{F}_{3} \\
& \mathbb{F}_{3}^{3}
\end{aligned} \in \mathbb{F}_{3}^{2} \oplus \mathbb{F}_{3}^{1}=\mathbb{F}_{3}^{6}
$$

$$
\begin{aligned}
& g=\left(\begin{array}{cccccc}
0 & 0 & 1 & & & \\
1 & 0 & 1 & & & \\
0 & 1 & 1 & & & \\
& & & 1 & 1 & \\
& & & 0 & 1 & \\
& & & & 1
\end{array}\right) \in \mathrm{GL}_{6} \mathbb{F}_{3} \\
& \mathbb{F}_{3}^{3} \oplus \mathbb{F}_{3}^{2} \oplus \mathbb{F}_{3}^{1}=\mathbb{F}_{3}^{6} \\
& \operatorname{type}(g)=\begin{array}{llll}
(3, \ldots \ldots, 1) \vdash 6
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
g=\left(\begin{array}{cccccc}
0 & 0 & 1 & & & \\
1 & 0 & 1 & & & \\
0 & 1 & 1 & & & \\
& & & 1 & 1 & \\
& & & 0 & 1 & \\
& & & & 1
\end{array}\right) \in \mathrm{GL}_{6} \mathbb{F}_{3} \\
\mathbb{F}_{3}^{3} \oplus \mathbb{F}_{3}^{2} \oplus \mathbb{F}_{3}^{1}=\mathbb{F}_{3}^{6} \\
\operatorname{type}(g)=\begin{array}{cccc}
(3, & 1,1 & , 1) \vdash 6
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
g=\left(\begin{array}{cccccc}
0 & 0 & 1 & & & \\
1 & 0 & 1 & & & \\
0 & 1 & 1 & & & \\
& & & 1 & 1 & \\
& & & 0 & 1 & \\
& & & & 1
\end{array}\right) \in \mathrm{GL}_{6} \mathbb{F}_{3} \\
\mathbb{F}_{3}^{3} \oplus \mathbb{F}_{3}^{2} \oplus \mathbb{F}_{3}^{1}=\mathbb{F}_{3}^{6} \\
\operatorname{type}(g)=\begin{array}{cccc}
(3, & 1,1 & , 1) \vdash 6
\end{array}
\end{gathered}
$$

A quote from Stong:
The analog of a cycle in $\pi \in S_{d}$ of length m is seen to be a polynomial $p(Z)$ of degree m that divides $\operatorname{char}(\alpha ; Z)$

Definition (cycle type)

Suppose $g \in \mathrm{GL}_{n} \mathbb{F}_{q}$ has characteristic polynomial f, which factors into irreducibles as $f=f_{1} \cdots f_{\ell}$ with weakly decreasing degrees.
Define its cycle type to be

$$
\operatorname{type}(g)=\left(\operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{\ell}\right) \vdash n
$$

Definition (cycle type)

Suppose $g \in \mathrm{GL}_{n} \mathbb{F}_{q}$ has characteristic polynomial f, which factors into irreducibles as $f=f_{1} \cdots f_{\ell}$ with weakly decreasing degrees.
Define its cycle type to be

$$
\operatorname{type}(g)=\left(\operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{\ell}\right) \vdash n
$$

Notation

For all $n \in \mathbb{N}, \mu \vdash n$ and prime powers q, define

$$
\mathcal{T}_{\mu}(q)=\left\{g \in \mathrm{GL}_{n} \mathbb{F}_{q}: \operatorname{type}(g)=\mu\right\}
$$

Definition (cycle type)

Suppose $g \in \mathrm{GL}_{n} \mathbb{F}_{q}$ has characteristic polynomial f, which factors into irreducibles as $f=f_{1} \cdots f_{\ell}$ with weakly decreasing degrees.
Define its cycle type to be

$$
\operatorname{type}(g)=\left(\operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{\ell}\right) \vdash n
$$

Notation

For all $n \in \mathbb{N}, \mu \vdash n$ and prime powers q, define

$$
\mathcal{T}_{\mu}(q)=\left\{g \in \mathrm{GL}_{n} \mathbb{F}_{q}: \operatorname{type}(g)=\mu\right\}
$$

Philosophy: $\mathcal{T}_{\mu}(q)$ is a q-analogue of \mathcal{C}_{μ}.

$$
g=\left(\begin{array}{cccccc}
0 & 0 & 1 & & & \\
1 & 0 & 1 & & & \\
0 & 1 & 1 & & & \\
& & & 0 & 1 & \\
& & & 1 & 1 & \\
& & & & & 1
\end{array}\right) \in \mathrm{GL}_{6} \mathbb{F}_{3}
$$

$$
\begin{gathered}
g=\left(\begin{array}{cccccc}
0 & 0 & 1 & & & \\
1 & 0 & 1 & & & \\
0 & 1 & 1 & & & \\
& & & 0 & 1 & \\
& & & 1 & 1 & \\
& & & & & 1
\end{array}\right) \in \mathrm{GL}_{6} \mathbb{F}_{3} \\
\\
U
\end{gathered} \oplus \quad \begin{array}{llll}
& & \oplus & \oplus \\
\end{array}
$$

char. poly. $(g)=\left(x^{3}-x^{2}-x-1\right)\left(x^{2}-x-1\right)\left(x^{1}-1\right)$

$$
g=\left(\begin{array}{cccccc}
0 & 0 & 1 & & & \\
1 & 0 & 1 & & & \\
0 & 1 & 1 & & & \\
& & & 0 & 1 & \\
& & & 1 & 1 & \\
& & & & & 1
\end{array}\right) \in \mathrm{GL}_{6} \mathbb{F}_{3}
$$

char. poly. $(g)=\left(x^{3}-x^{2}-x-1\right)\left(x^{2}-x-1\right)\left(x^{1}-1\right)$ $\operatorname{type}(g)=(3,2,1)$

$$
\begin{gathered}
g=\left(\begin{array}{cccccc}
0 & 0 & 1 & & & \\
1 & 0 & 1 & & & \\
0 & 1 & 1 & & & \\
& & & 0 & 1 & \\
& & & 1 & 1 & \\
& & & & & 1
\end{array}\right) \in \mathrm{GL}_{6} \mathbb{F}_{3} \\
\\
U
\end{gathered}
$$

char. poly. $(g)=\left(x^{3}-x^{2}-x-1\right)\left(x^{2}-x-1\right)\left(x^{1}-1\right)$ $\operatorname{type}(g)=(3,2,1)=(\operatorname{dim} U, \operatorname{dim} V, \operatorname{dim} W)$

$$
g=\left(\begin{array}{cccccc}
0 & 0 & 1 & & & \\
1 & 0 & 1 & & & \\
0 & 1 & 1 & & & \\
& & & 0 & 1 & \\
& & & 1 & 1 & \\
& & & & 1
\end{array}\right) \in \mathrm{GL}_{6} \mathbb{F}_{3}
$$

char. poly. $(g)=\left(x^{3}-x^{2}-x-1\right)\left(x^{2}-x-1\right)\left(x^{1}-1\right)$ $\operatorname{type}(g)=(3,2,1)=(\operatorname{dim} U, \operatorname{dim} V, \operatorname{dim} W)$

Corollary (Stong, see also Kung, Lehrer, Fulman)

As $q \rightarrow \infty$, an arbitrarily large proportion of $\mathrm{GL}_{n} \mathbb{F}_{q}$ elements have no repeated factors in their characteristic polynomial.

Theorem (Brickman-Fillmore)

The lattice of stable subspaces of $g \in \mathrm{GL}_{n} \mathbb{F}_{q}$ is Boolean if and only if g has no repeated factors in its characteristic polynomial.

Theorem (Brickman-Fillmore)

The lattice of stable subspaces of $g \in \mathrm{GL}_{n} \mathbb{F}_{q}$ is Boolean if and only if g has no repeated factors in its characteristic polynomial.

$$
\underbrace{\operatorname{type}(g)=(3,2,1)} \quad \pi=(254)(16)(3) \in \mathcal{C}_{(3,2,1)}
$$

Theorem (Brickman-Fillmore)

The lattice of stable subspaces of $g \in \mathrm{GL}_{n} \mathbb{F}_{q}$ is Boolean if and only if g has no repeated factors in its characteristic polynomial.

no repeated factors

$$
\pi=(254)(16)(3) \in \mathcal{C}_{(3,2,1)}
$$

Theorem (Brickman-Fillmore)

The lattice of stable subspaces of $g \in \mathrm{GL}_{n} \mathbb{F}_{q}$ is Boolean if and only if g has no repeated factors in its characteristic polynomial.
$\underbrace{\text { type }(g)=(3,2,1)}$
no repeated factors

$$
\pi=(254)(16)(3) \in \mathcal{C}_{(3,2,1)}
$$

Definition

An element $g \in \mathrm{GL}_{n} \mathbb{F}_{q}$ is called regular semisimple if the irreducible factors of its characteristic polynomial are distinct.

Notation

For all $n \in \mathbb{N}, \mu \vdash n$, and prime powers q, define

$$
\mathcal{T}_{\mu}^{\square}(q)=\left\{g \in \mathcal{T}_{\mu}(q): g \text { is regular semisimple }\right\} .
$$

Philosophy: $\mathcal{T}_{\mu}^{\square}(q)$ is also a q-analogue of \mathcal{C}_{μ}.

Note: $\mathcal{T}_{(n)}^{\square}(q)=\mathcal{T}_{(n)}(q)=$ the regular elliptic elements.

Note: $\mathcal{T}_{(n)}^{\square}(q)=\mathcal{T}_{(n)}(q)=$ the regular elliptic elements.

Definition

For all $n, k \in \mathbb{N}, \mu \vdash n$, and prime powers q, define

$$
\begin{aligned}
& g_{k, \mu}(q)=\#\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{T}_{(n)}(q)^{k}: t_{1} \cdots t_{k} \in \mathcal{T}_{\mu}(q)\right\} \\
& g_{k, \mu}^{\square}(q)=\#\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{T}_{(n)}(q)^{k}: t_{1} \cdots t_{k} \in \mathcal{T}_{\mu}^{\square}(q)\right\} .
\end{aligned}
$$

Note: $\mathcal{T}_{(n)}^{\square}(q)=\mathcal{T}_{(n)}(q)=$ the regular elliptic elements.

Definition

For all $n, k \in \mathbb{N}, \mu \vdash n$, and prime powers q, define

$$
\begin{aligned}
& g_{k, \mu}(q)=\#\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{T}_{(n)}(q)^{k}: t_{1} \cdots t_{k} \in \mathcal{T}_{\mu}(q)\right\}, \\
& g_{k, \mu}^{\square}(q)=\#\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{T}_{(n)}(q)^{k}: t_{1} \cdots t_{k} \in \mathcal{T}_{\mu}^{\square}(q)\right\} .
\end{aligned}
$$

Philosophy: these are q-analogues of

$$
g_{k, \mu}=\#\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{C}_{(n)}^{k}: t_{1} \cdots t_{k} \in \mathcal{C}_{\mu}\right\}
$$

$\mathrm{GL}_{n} \mathbb{F}_{q}$

$\mathrm{GL}_{n} \mathbb{F}_{q}$

Main result

Theorem

For all $n, k \in \mathbb{N}$ with $n>2$, all prime powers q, and all $\mu \vdash n$ with $m_{1}(\mu)=1$, we have

$$
g_{k, \mu}^{\square}(q)=\frac{\# \mathcal{T}_{(n)}(q)^{k} \cdot \# \mathcal{T}_{\mu}^{\square}(q)}{\# \mathrm{GL}_{n} \mathbb{F}_{q}} \cdot \sum_{r=0}^{n-1} \frac{(-1)^{r k} \chi_{\mu}^{\left(n-r, 1^{r}\right)}}{\left(q^{\binom{r+1}{2} \cdot\left[\begin{array}{c}
n-1 \\
r
\end{array}\right]_{q}}\right)^{k-1}}
$$

Main result

Theorem

For all $n, k \in \mathbb{N}$ with $n>2$, all prime powers q, and all $\mu \vdash n$ with $m_{1}(\mu)=1$, we have

$$
g_{k, \mu}^{\square}(q)=\frac{\# \mathcal{T}_{(n)}(q)^{k} \cdot \# \mathcal{T}_{\mu}^{\square}(q)}{\# \mathrm{GL}_{n} \mathbb{F}_{q}} \cdot \sum_{r=0}^{n-1} \frac{(-1)^{r k} \chi_{\mu}^{\left(n-r, 1^{r}\right)}}{\left(q^{\binom{r+1}{2} \cdot\left[\begin{array}{c}
n-1 \\
r
\end{array}\right]_{q}}\right)^{k-1}}
$$

Compare to a rephrasing of Stanley's result:

$$
g_{k, \mu}=\frac{\# \mathcal{C}_{(n)}^{k} \cdot \# \mathcal{C}_{\mu}}{\# \mathfrak{S}_{n}} \cdot \sum_{r=0}^{n-1} \frac{(-1)^{r k} \chi_{\mu}^{\left(n-r, 1^{r}\right)}}{\binom{n-1}{r}^{k-1}}
$$

Corollary

Under the previous hypotheses $\left(m_{1}(\mu)=1\right)$, we have

$$
\lim _{q \rightarrow 1} \frac{g_{k, \mu}^{\square}(q) / \# \mathcal{T}_{(n)}(q)^{k}}{\# \mathcal{T}_{\mu}^{\square}(q) / \# \mathrm{GL}_{n} \mathbb{F}_{q}}=\frac{g_{k, \mu} / \# \mathcal{C}_{(n)}^{k}}{\# \mathcal{C}_{\mu} / \# \mathfrak{S}_{n}}
$$

Corollary

Under the previous hypotheses $\left(m_{1}(\mu)=1\right)$, we have

$$
\lim _{q \rightarrow 1} \frac{g_{k, \mu}^{\square}(q) / \# \mathcal{T}_{(n)}(q)^{k}}{\# \mathcal{T}_{\mu}^{\square}(q) / \# \mathrm{GL}_{n} \mathbb{F}_{q}}=\frac{g_{k, \mu} / \# \mathcal{C}_{(n)}^{k}}{\# \mathcal{C}_{\mu} / \# \mathfrak{S}_{n}}
$$

Theorem

For all $n, k \in \mathbb{N}$ with $k \geq 2$ and all $\mu \vdash n$, we have

$$
\lim _{q \rightarrow \infty} \frac{g_{k, \mu}^{\square}(q) / \# \mathcal{T}_{(n)}(q)^{k}}{\# \mathcal{T}_{\mu}^{\square}(q) / \# \mathrm{GL}_{n} \mathbb{F}_{q}}=1
$$

The same holds without the \square.

Corollary (to main result)

For all $n, k \in \mathbb{N}$ with $n>2$ and all prime powers q, we have

$$
g_{k,(n-1,1)}(q)=\frac{\# \mathcal{T}_{(n)}(q)^{k} \cdot \# \mathcal{T}_{(n-1,1)}(q)}{\# \mathrm{GL}_{n} \mathbb{F}_{q}} \cdot\left(1+\frac{(-1)^{n k-n-k}}{q^{\binom{n}{2}(k-1)}}\right)
$$

Corollary (to main result)

For all $n, k \in \mathbb{N}$ with $n>2$ and all prime powers q, we have

$$
g_{k,(n-1,1)}(q)=\frac{\# \mathcal{T}_{(n)}(q)^{k} \cdot \# \mathcal{T}_{(n-1,1)}(q)}{\# \mathrm{GL}_{n} \mathbb{F}_{q}} \cdot\left(1+\frac{(-1)^{n k-n-k}}{q^{\binom{2}{2}(k-1)}}\right) .
$$

Compare to

$$
g_{k,(n-1,1)}=\frac{\# \mathcal{C}_{(n)}^{k} \cdot \# \mathcal{C}_{(n-1,1)}}{\# \mathfrak{S}_{n}} \cdot\left(1+(-1)^{n k-n-k}\right)
$$

Theorem
For all $n, k \in \mathbb{N}$ and prime powers q, we have a closed formula for

$$
g_{k,(n)}(q)
$$

but it is complicated and involves $k+1$ nested sums over the divisors of n.

Theorem

For all $n, k \in \mathbb{N}$ and prime powers q, we have a closed formula for

$$
g_{k,(n)}(q)
$$

but it is complicated and involves $k+1$ nested sums over the divisors of n.

Unsure how to compare to

$$
g_{k,(n)}=\frac{\# \mathcal{C}_{(n)}^{k+1}}{\# \mathfrak{S}_{n}} \sum_{r=0}^{n-1}\left(\frac{(-1)^{r}}{\binom{n-1}{r}}\right)^{k-1}
$$

$$
\begin{aligned}
P_{n, k}(q) & =\frac{1}{\# \mathrm{GL}_{n} \mathbb{F}_{q}}\left(\frac{(-1)^{n} \# \mathrm{GL}_{n} \mathbb{F}_{q}}{n\left(q^{n}-1\right)}\right)^{k} \\
\operatorname{deg}_{n, d, r}(q) & =q^{d\binom{r+1}{2}} \cdot \frac{\prod_{i=1}^{n}\left(q^{i}-1\right)}{\prod_{j=1}^{n / d}\left(q^{j d}-1\right)} \cdot\left[\begin{array}{c}
n / d-1 \\
r
\end{array}\right]_{q^{d}} \\
D_{n, k, d}(q) & =\sum_{r=0}^{\frac{n}{d}-1}(-1)^{r k} \operatorname{deg}_{n, d, r}(q)^{2-k} \\
C_{n, k, c}(q) & =\sum_{s_{1}, \ldots, s_{k} \mid n} \frac{\left(q^{n}-1\right) \prod_{i=1}^{k}\left[\left(q^{s_{i}}-1\right) \mu\left(n / s_{i}\right)\right]}{\operatorname{lcm}_{\mathbb{Z}}\left(\frac{q^{n}-1}{q^{c}-1}, q^{s_{1}}-1, \ldots, q^{s_{k}}-1\right)}
\end{aligned}
$$

$$
P_{n, k}(q)=\frac{1}{\# \mathrm{GL}_{n} \mathbb{F}_{q}}\left(\frac{(-1)^{n} \# \mathrm{GL}_{n} \mathbb{F}_{q}}{n\left(q^{n}-1\right)}\right)^{k}
$$

$$
\operatorname{deg}_{n, d, r}(q)=q^{d\binom{r+1}{2}} \cdot \frac{\prod_{i=1}^{n}\left(q^{i}-1\right)}{\prod_{j=1}^{n / d}\left(q^{j d}-1\right)} \cdot\left[\begin{array}{c}
n / d-1 \\
r
\end{array}\right]_{q^{d}}
$$

$$
D_{n, k, d}(q)=\sum_{r=0}^{\frac{n}{d}-1}(-1)^{r k} \operatorname{deg}_{n, d, r}(q)^{2-k}
$$

$$
C_{n, k, c}(q)=\sum_{s_{1}, \ldots, s_{k} \mid n} \frac{\left(q^{n}-1\right) \prod_{i=1}^{k}\left[\left(q^{s_{i}}-1\right) \mu\left(n / s_{i}\right)\right]}{\operatorname{lcm}_{\mathbb{Z}}\left(\frac{q^{n}-1}{q^{c}-1}, q^{s_{1}}-1, \ldots, q^{s_{k}}-1\right)}
$$

$$
\frac{g_{k,(n)}(q)}{P_{n, k+1}(q)}=\sum_{d \mid n} \frac{d^{k}}{(-1)^{n(k+1) / d}} D_{n, k+1, d}(q) \sum_{c \mid d} \mu\left(\frac{d}{c}\right) C_{n, k+1, c}(q)
$$

Missing cases for $g_{k, \mu}(q)$ or $g_{k, \mu}^{\square}(q): m_{1}(\mu) \neq 1$.

Missing cases for $g_{k, \mu}(q)$ or $g_{k, \mu}^{\square}(q): m_{1}(\mu) \neq 1$.
Some progress:

Theorem

For all even prime powers q and $n, k \in \mathbb{N}$ with n odd, we have

$$
g_{k, \mu}^{\square}(q)=\frac{\# \mathcal{T}_{(n)}(q)^{k} \cdot \# \mathcal{T}_{\mu}^{\square}(q)}{\# \mathrm{GL}_{n} \mathbb{F}_{q}} \cdot \sum_{r=0}^{n-1} \frac{(-1)^{r k} \chi_{\mu}^{\left(n-r, 1^{r}\right)}}{\left(q^{\binom{r+1}{2}\left[\begin{array}{c}
n-1 \\
r
\end{array}\right]_{q}}\right)^{k-1}}
$$

if either $\mu=(n-2,2)$ with $n \geq 5$ or $\mu=\left(2,1^{n-2}\right)$ with $n \geq 3$.

Behind the scenes

Technique

Theorem (Frobenius)

Let G be a finite group, let $k \in \mathbb{N}$, and, for each $i \in\{1, \ldots, k\}$, let A_{i} be a union of conjugacy classes in G. For any $g \in G$, the number of tuples $\left(t_{1}, \ldots, t_{k}\right) \in A_{1} \times \cdots \times A_{k}$ such that $t_{1} \cdots t_{k}=g$ is given by

$$
\frac{1}{\# G} \sum_{\chi \in \operatorname{lrr}(G)}(\operatorname{deg} \chi)^{1-k} \chi\left(g^{-1}\right) \prod_{i=1}^{k} \sum_{t \in A_{i}} \chi(t)
$$

For the symmetric group

Theorem (Murnaghan, Nakayama)
For all $n \in \mathbb{N}$ and $\lambda, \mu \vdash n$, we have

$$
\chi_{\mu}^{\lambda}=\sum_{\substack{\text { border strip tab. } \\ \text { of shape } \lambda \\ \text { and type } \mu}}(-1)^{h t T} .
$$

en.wikipedia.org/wiki/Murnaghan-Nakayama_rule

- the set or squares mimed with the integer tiorm a dorder simp, matis, a connected skew-smape with no <x<-sq

The height, $h t(\mathrm{~T})$, is the sum of the heights of the border strips in T. The height of a border strip is one less than t It follows from this theorem that the character values of a symmetric group are integers.
For some combinations of λ and ρ, there are no border-strip tableaux. In this case, there are no terms in the sur

Example [edit]

Consider the calculation of one of the character values for the symmetric group of order 8 , when λ is the partition λ specifies that the tableau must have three rows, the first having 5 boxes, the second having 2 boxes, and the tl tableau must be filled with three 1 's, three 2 's, one 3 , and one 4 . There are six such border-strip tableaux:

If we call these $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}$, and T_{6}, then their heights are
$h t\left(T_{1}\right)=0+1+0+0=1$
$h t\left(T_{2}\right)=1+0+0+0=1$
$h t\left(T_{3}\right)=1+0+0+0=1$
$h t\left(T_{4}\right)=2+0+0+0=2$
$h t\left(T_{5}\right)=2+0+0+0=2$
$h t\left(T_{6}\right)=2+1+0+0=3$
and the character value is therefore
$\chi_{(3,3,1,1)}^{(5,2,1)}=(-1)^{1}+(-1)^{1}+(-1)^{1}+(-1)^{2}+(-1)^{2}+(-1)^{3}=-1-1-1+1+1-1=-2$

For $\mathrm{GL}_{n} \mathbb{F}_{q}$

Lemma (based on Green's work)

Suppose $n \in \mathbb{N}, d \mid n, \lambda \vdash n / d, q$ is a prime power, $f \in \mathcal{F}_{d}(q)$, $\mu \vdash n, g \in \mathcal{T}_{\mu}^{\square}(q)$, and $h_{1}, \ldots, h_{\ell(\mu)}$ are the distinct irreducible factors of the characteristic polynomial of g. If some part of μ is not divisible by d, then $\chi^{f \mapsto \lambda}(g)=0$. Otherwise, there exists $\tilde{\mu} \vdash n / d$ such that $\mu=d \tilde{\mu}$, and

$$
\chi^{f \mapsto \lambda}(g)=(-1)^{\frac{n}{d}(d-1)} \chi_{\tilde{\mu}}^{\lambda} \prod_{i=1}^{\ell(\mu)} \frac{1}{\tilde{\mu}_{i}} \sum_{\substack{\beta_{i} \in \mathbb{F}_{q^{\prime}} \\ h_{i}\left(\beta_{i}\right)=0}} \theta\left(\beta_{i}\right)^{\ell_{f}\left[\tilde{\mu}_{i}\right]_{q^{d}}}
$$

Previous results on characters

Theorem (Steinberg)
For all $n \in \mathbb{N}$ and $\lambda, \mu \vdash n$, if $g \in \mathcal{T}_{\mu}^{\square}(q)$, then $\chi^{z-1 \mapsto \lambda}(g)=\chi_{\mu}^{\lambda}$.

Previous results on characters

Theorem (Steinberg)
For all $n \in \mathbb{N}$ and $\lambda, \mu \vdash n$, if $g \in \mathcal{T}_{\mu}^{\square}(q)$, then $\chi^{z-1 \mapsto \lambda}(g)=\chi_{\mu}^{\lambda}$.
Proposition (Lewis-Reiner-Stanton)
For all $\chi \in \operatorname{Irr} \mathrm{GL}_{n} \mathbb{F}_{q}$ and $g \in \mathcal{T}_{(n)}(q)$, if $\chi(g) \neq 0$, then
$\chi=\chi^{f \mapsto\left(n / d-r, 1^{r}\right)}$ for some f with $\operatorname{deg} f=d$ and
$r \in\{0, \ldots, n / d-1\}$.

Previous results on characters

Theorem (Steinberg)

For all $n \in \mathbb{N}$ and $\lambda, \mu \vdash n$, if $g \in \mathcal{T}_{\mu}^{\square}(q)$, then $\chi^{z-1 \mapsto \lambda}(g)=\chi_{\mu}^{\lambda}$.

Proposition (Lewis-Reiner-Stanton)

For all $\chi \in \operatorname{Irr} \mathrm{GL}_{n} \mathbb{F}_{q}$ and $g \in \mathcal{T}_{(n)}(q)$, if $\chi(g) \neq 0$, then $\chi=\chi^{f \mapsto\left(n / d-r, 1^{1}\right)}$ for some f with $\operatorname{deg} f=d$ and $r \in\{0, \ldots, n / d-1\}$.

Compare to:

$$
\chi_{(n)}^{\lambda} \neq 0 \Longrightarrow \lambda=\left(n-r, 1^{r}\right) \text { for some } r \in\{0, \ldots, n-1\} .
$$

Summary of proofs

- Proposition says only $\chi^{f \mapsto\left(n / d-r, 1^{r}\right)}$ are relevant.
- Lemma says only need to consider values of d dividing every part of μ.
- Plug character values into Frobenius' formula.
- Simplify. \because

Summary of proofs

- Proposition says only $\chi^{f \mapsto\left(n / d-r, 1^{r}\right)}$ are relevant.
- Lemma says only need to consider values of d dividing every part of μ.
- Plug character values into Frobenius' formula.
- Simplify. \because

End up with a formula for

$$
g_{k, \mu}(q)=\#\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathcal{T}_{(n)}(q)^{k}: t_{1} \cdots t_{k} \in \mathcal{T}_{\mu}(q)\right\}
$$

Polynomiality

Corollary (to main result)
Suppose $n, k \in \mathbb{N}$ with $n>2$. If $\mu \vdash n$ with $m_{1}(\mu)=1$, then $g_{k, \mu}^{\square}(q)$ is a polynomial in q with rational coefficients.

Corollary (to main result)
Suppose $n, k \in \mathbb{N}$ with $n>2$. If $\mu \vdash n$ with $m_{1}(\mu)=1$, then $g_{k, \mu}^{\square}(q)$ is a polynomial in q with rational coefficients.

Example

For all prime powers q,

$$
g_{2,(2,1)}(q)=\frac{1}{18} q^{6}(q-1)^{7}(q+1)^{3}\left(q^{2}+q+1\right)
$$

Corollary (to main result)

Suppose $n, k \in \mathbb{N}$ with $n>2$. If $\mu \vdash n$ with $m_{1}(\mu)=1$, then $g_{k, \mu}^{\square}(q)$ is a polynomial in q with rational coefficients.

Example
For all prime powers q,

$$
g_{3,(2,1)}(q)=\frac{1}{54} q^{7}(q-1)^{10}(q+1)^{6}\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)
$$

Corollary (to $g_{k,(n)}(q)$ formula)

Fix $n, k \in \mathbb{N}$. If n is prime, there exist degree- $k n^{2}$ polynomials $f_{0}, f_{1}, \ldots, f_{n-1} \in \mathbb{Q}[x]$ such that, for each $i \in\{0, \ldots, n-1\}$, we have

$$
g_{k,(n)}(q)=f_{i}(q) \quad \text { for all prime powers } q \equiv i \quad(\bmod n)
$$

Furthermore, $f_{1} \neq f_{0}=f_{2}=f_{3}=\cdots=f_{n-1}$.

Corollary (to $g_{k,(n)}(q)$ formula)

Fix $n, k \in \mathbb{N}$. If n is prime, there exist degree- $k n^{2}$ polynomials $f_{0}, f_{1}, \ldots, f_{n-1} \in \mathbb{Q}[x]$ such that, for each $i \in\{0, \ldots, n-1\}$, we have

$$
g_{k,(n)}(q)=f_{i}(q) \quad \text { for all prime powers } q \equiv i \quad(\bmod n)
$$

Furthermore, $f_{1} \neq f_{0}=f_{2}=f_{3}=\cdots=f_{n-1}$.

Example

If $n=k=2$, then

$$
\begin{aligned}
& f_{0}(q)=\frac{1}{8} q^{3}(q-1)^{3}\left(q^{2}-3 q+4\right) \\
& f_{1}(q)=\frac{1}{8} q(q-1)^{4}\left(q^{3}-2 q^{2}+2 q+1\right)
\end{aligned}
$$

Corollary (to $g_{k,(n)}(q)$ formula)

Fix $n, k \in \mathbb{N}$. If n is prime, there exist degree- $k n^{2}$ polynomials $f_{0}, f_{1}, \ldots, f_{n-1} \in \mathbb{Q}[x]$ such that, for each $i \in\{0, \ldots, n-1\}$, we have

$$
g_{k,(n)}(q)=f_{i}(q) \quad \text { for all prime powers } q \equiv i \quad(\bmod n) .
$$

Furthermore, $f_{1} \neq f_{0}=f_{2}=f_{3}=\cdots=f_{n-1}$.

Example

If $n=3$ and $k=2$, then
$f_{0}(q)=\frac{1}{27} q^{6}(q-1)^{4}(q+1)^{2}\left(q^{6}-4 q^{4}+3 q^{3}+5 q^{2}-9 q+1\right)$,
$f_{1}(q)=\frac{1}{27} q^{3}(q-1)^{5}(q+1)\left(q^{9}+2 q^{8}-2 q^{7}-3 q^{6}+5 q^{5}+q^{4}-9 q^{3}-4 q^{2}-2 q+2\right)$.

Example

The generating functions for quasipolynomials are rational:

$$
\begin{aligned}
\sum_{q \geq 0} g_{2,(2)}(q) x^{q} & =2 x^{2}\left(4 x^{12}+177 x^{11}+1821 x^{10}+8301 x^{9}\right. \\
& +22521 x^{8}+37086 x^{7}+41830 x^{6}+29910 x^{5}+ \\
& 14706 x^{4}+4161 x^{3}+717 x^{2}+45 x \\
& +1) /\left(\left(1-x^{2}\right)^{6}(1-x)^{3}\right)
\end{aligned}
$$

Coefficients of numerator of generating function of $g_{2,(2)}(q)$

Coefficients of numerator of generating function of $g_{3,(2)}(q)$

Coefficients of numerator of generating function of $g_{4,(2)}(q)$

Coefficients of numerator of generating function of $g_{5,(2)}(q)$

Coefficients of numerator of generating function of $g_{2,(3)}(q)$

Coefficients of numerator of generating function of $g_{3,(3)}(q)$

Open problems

Open problems

- Prove that, for composite n, there exists $f_{1} \in \mathbb{Q}[x]$ such that

$$
g_{k,(n)}(q)=f_{1}(q) \quad \text { for all prime powers } q \equiv 1 \quad(\bmod n)
$$

Open problems

- Prove that, for composite n, there exists $f_{1} \in \mathbb{Q}[x]$ such that

$$
g_{k,(n)}(q)=f_{1}(q) \quad \text { for all prime powers } q \equiv 1 \quad(\bmod n)
$$

- For more values of μ, prove

$$
\lim _{q \rightarrow 1} \frac{g_{k, \mu}^{\square}(q) / \# \mathcal{T}_{(n)}(q)^{k}}{\# \mathcal{T}_{\mu}^{\square}(q) / \# \mathrm{GL}_{n} \mathbb{F}_{q}}=\frac{g_{k, \mu} / \# \mathcal{C}_{(n)}^{k}}{\# \mathcal{C}_{\mu} / \# \mathfrak{S}_{n}}
$$

Open problems

- Prove that, for composite n, there exists $f_{1} \in \mathbb{Q}[x]$ such that

$$
g_{k,(n)}(q)=f_{1}(q) \quad \text { for all prime powers } q \equiv 1 \quad(\bmod n)
$$

- For more values of μ, prove

$$
\lim _{q \rightarrow 1} \frac{g_{k, \mu}^{\square}(q) / \# \mathcal{T}_{(n)}(q)^{k}}{\# \mathcal{T}_{\mu}^{\square}(q) / \# \mathrm{GL}_{n} \mathbb{F}_{q}}=\frac{g_{k, \mu} / \# \mathcal{C}_{(n)}^{k}}{\# \mathcal{C}_{\mu} / \# \mathfrak{S}_{n}}
$$

- Refine the main factorization results to the level of conjugacy classes.

Open problems

- Prove that, for composite n, there exists $f_{1} \in \mathbb{Q}[x]$ such that

$$
g_{k,(n)}(q)=f_{1}(q) \quad \text { for all prime powers } q \equiv 1 \quad(\bmod n)
$$

- For more values of μ, prove

$$
\lim _{q \rightarrow 1} \frac{g_{k, \mu}^{\square}(q) / \# \mathcal{T}_{(n)}(q)^{k}}{\# \mathcal{T}_{\mu}^{\square}(q) / \# \mathrm{GL}_{n} \mathbb{F}_{q}}=\frac{g_{k, \mu} / \# \mathcal{C}_{(n)}^{k}}{\# \mathcal{C}_{\mu} / \# \mathfrak{S}_{n}}
$$

- Refine the main factorization results to the level of conjugacy classes.
- Describe the numerator of $\sum_{q \geq 0} g_{k, \mu}(q) x^{q}$.

More open problems

Develop q-analogues of the following:

More open problems

Develop q-analogues of the following:

- Hurwitz theory

More open problems

Develop q-analogues of the following:

- Hurwitz theory
- the tree bijection from the introduction

More open problems

Develop q-analogues of the following:

- Hurwitz theory
- the tree bijection from the introduction
- the Murnaghan-Nakayama rule

More open problems

Develop q-analogues of the following:

- Hurwitz theory
- the tree bijection from the introduction
- the Murnaghan-Nakayama rule
- the Jucys-Murphy elements and the class symmetric functions

More open problems

Develop q-analogues of the following:

- Hurwitz theory
- the tree bijection from the introduction
- the Murnaghan-Nakayama rule
- the Jucys-Murphy elements and the class symmetric functions

More open problems

Develop q-analogues of the following:

- Hurwitz theory
- the tree bijection from the introduction
- the Murnaghan-Nakayama rule
- the Jucys-Murphy elements and the class symmetric functions

Thanks!

