
Math Lib

Graham Gordon

• name	
• name	
• name	-
• name	
• adjective	
• letter	
• year	
• finite group	
• noun	
noun	
• noun	

Abstract.

Recent work by _____, ____, ____, (name 3) (name 4) and (name 5) (name 5) (name 7) (name 2) _ suggests that the _______ are somehow analogous to the _______ _ elements (adj. 2) _____ of the symmet-(finite group 1) of (adj. 2) elements. More precisely, we define a notion of _____ type (noun 3) $\underbrace{(adj. 2)}_{(finite group 1)} \quad and seek to enumerate the \underbrace{(pl. noun 4)}_{(pl. noun 4)} \quad of a fixed number of$ for (adj. 1) (adj. 2) (adj. 2) (pl. noun 4) (pl. noun 4) (pl. noun 4) (pl. noun 4) (noun 3) , the problem of computing the probability that the product of a random _____ (sing. noun 4) of ______ elements has a given ______ type. We conclude with some results about the ______ -ity of our enumerative formulas and some _____ problems.